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ABSTRACT

Multistate Coherent Svstems.

The vast majority of reliability analyses assume that components and

system are in either of two states: functioning or failed. The present paper

develops basic theory for the study of systems of components in which any of

a finite number of states may occur, representing at one extreme perfect

functioning and at the other extreme complete failure. We lay down axioms

extending the standard notiou of a coherent system to the new notion of a

multistate coherent system. For such systems we obtain deterministic and

probabilistic properties for system performance which are analogous to well-

known results for coherent system reliability.
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Multistate Coherent Systems.

1. Introduction and Summary

A central problem in reliability theory is to determine the relationship
between the reliability of a complex system and the reliabilities of its
components. Thus far, in practically all treatments of this problem, the
system ar.d its components are considered to be in either of two states:
functioning (denoted by 1) and failed (denoted by 0). The theory of binary
coherent structures has served as a unifying foundation for a mathematical
and statistical theory of reliability for this dichotomous case. In fact,
fairly complete solutions of various aspects of this problem have been
obtained by Birnmbaum, Esary, Saunders, Marshall, Barlow, and Proschan. See,
for example, [1], (3], (4], [S5], (6], and [7].

In many real life situations, however, the systems and their components

are capable of assuming a whole range of levels of performance, varying from

perfect functioning (denoted by level M, say) to complete failure (denoted by
0). In these situations, the dichotomous model is an oversimplification of
the actual situation, and so models repreéenting multistate systems and
multistate components are much more useful in describing the performance of

these systems in terms of the performance of their components.

Unfortunately, very little work has been done on this more general

problem of multistate systems. Among the earlier papers treating aspects of

multistate systems are [8], [9], [10], [11], [13], and [14]. With the

exception of [10] and [11], these papers deal mainly with models for

cannibaliz 1, and barely touch on the performance of systems and components q

assuming 1t . 1 two states. More recent and more sophisticated work on




multistate systems has been performed by Barlow [2] and Ross [12]; however,
their models are more specialized than ours, as we shall see.

The main purpose of the present paper is to develop an adequate general
model and theory for the case in which both systems and components may assume
any of an ordered set of states, say 0,1,2,...,M; this theory generalizes
coherent structure theory. We develop the concept of a multistate coherent
structure as a generalization of the well-known concept of binary coherent
L structure. We then use this concept as a unifying foundation for the study
of the relationship between the performance of a sytem and the performance
of the components in the system. In forthcoming papers, we shall present
L treatments of various stochastic aspects of multistate systems with the aim

i of ultimately achieving a comprehensive theory analogous to coherent structure

theory in the binary case (see (11]). ;
E We now summarize the contents of this paper. Our formulation and ;
] treatment are similar to that of Barlow and Proschan [1l] for the two state
case. In Section 2 we present the notation and terminology used throughout
the paper. 1In Section 3 we consider a system of n components. For each
component and for the system itself, we can distinguish among say M+l

states representing successive levels of performance ranging from perfect

functioning (level M) down to complete failure (level 0). For component i,

x, denotes the corresponding state or performance level, i=1,2,...,n; the

i
vector x = (xl,...,xn) denotes the vector of states of components 1,...,n.

We assume that the state ¢ of the system is a deterministic function of the
states Xy,...,X of the components. Thus ¢ = ¢(x), where x assumes its
values in S, § = {0,1,...,M}, and ¢ assumes its values in S. We define a

multistate coherent sturcture as a natural generalization of the standard

i“'ii-li-llliilnlu| .
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concept of a binary coherent structure by requiring three reasonable
conditions that ¢ must satisfy.

We then obtain deterministic relationships between the performance of
a system and the performance of its components; these relationships are
natural generalizations of well-known results in the binary case. Thus we
show that the performance of a multistate coherent system is bounded below
by the performance of a series system and bounded above by the performance
of a parallel system. We next present a decomposition identity useful in
deriving inductive proofs and probabilistic properties for systems. Finally,
we generalize the practical result that redundanc; at the component level is
better than redundancy at the system level.

In Section 4 we investigate the probabilisitic aspects of multistate
coherent systems. We relate in a probabilistic sense the performance of
the system to the performance of its components, assumed statistically
independent. Next the decomposition identity of Section 3 is used to obtain
a corresponding decomposition identity for the performance function of the
system. This decomposition identity is then used to show that system
performance is a monotone increasing function of component performances. We
end the section by obtaining bounds on system performance.

Finally, in Section 5 we study some dynamic aspects of multistate
coherent systems. In earlier sections, we tacitly assume that time is
fixed. In Section 5 we consider multistate coherent system as operating
over time. At time O the system and each of its components are in state M
(corresponding to perfect functioning). As time passes, the performance
level of components (and consequently of the system) deteriorates to lower

levels until finally level 0 (complete failure) is reached. We define the

I.......-...-........-..........l.llllIIlIl.IIIIIIII-.Ii-.---.-.-M» : -
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concepts of IFRA and NBU stochastic processes introduced by Ross [12]. We
present a different definition for an NBU stochastic process, and prove
the analogue of the NBU closure theorems using a new characterization of

the NBU property.

2, Notation and Terminology.

The vector x = (xl,...,xn) denotes the vector of states of components

1 e
s = {0,1,...,M} denotes the set of possible states of both
components and systems
c={1,2,...,n} denotes the set of component indices.
(31”5) z (xl""’xi-l’ Iy x1+1,...,xn), where j = 0,1,...,M.

(.1’5) = (xl,...,xi_l, o xi+1,...,xn).
i (j’ j:--nj)'

Y < x means y, < X,

xVy denotes max(x,y).

for i=1l,...,n and Yq < Xy for some i.

XxVy = (xlvy,...,anyn).
xly denotes min(x,y).
xAy = (xlAyl,...,anyn).

"increasing' is used in place of "nondecreasing", and "decreasing'
is used in place of "nonincreasing'.

When we say f(x ,...,xn) is increasing we mean f is increasing in
each argument.

Given a univariate distribution F, its complement 1-F is denoted by
F.

3. Deterministic Properties of Multistate Coherent Systems.

Consider a system of n components. We assume that for both the system

and its components we can distinguish among a finite number of distinct




states representing various levels of performance, ranging trom perfect
functioning (state M) to complete failure (state 0). As time passes a
component, starting in state M, deteriorates and enters state M-1, deteri-
orates further entering state M-2, etc., until ultimately it descends to
state 0; a similar succession of decreasing_state levels describes the
system progression over time. (In a later paper, we consider the case of
a continuous range of performance levels varying over the interval (0,1].)

The performance x, of component i assumes a value in the set

i
s = {0,1,...,M}. We assume that the performance of the systems depends

deterministically on the performance of each of the components. Thus the
state of the system is determined by a function $: Sn + §. Given x, the

vector of component states, we may determine 9(x), the system state. The

function ¢ is called the structure function of the system.

The structure function ¢ satisfies certain conditions that represent
intuitively reasonable properties of systems encountered in practice. In
the binary case the following two conditions are required for a system to

be a coherent structure ([1], Def. 2.1, p. 6):

(1) The function ¢(x) is increasing.

(ii) Each component is relevant to the system; i.e., for each i
there exists a vector ('1*5) such that ¢(11,§) > ¢(Oi,§). This means
that the function ¢ is not constant in the ith argument, i=1,...,n.
Condition (i) embodies the reasonable assumption that improving the

performance of a component is not harmful to system performance. Condition
(ii) eliminates from consideration components which have no effect on system
performance.

In our present multistate model, we stipulate three conditions:




Definition 3.1. A system of n components is said to be a multistate

coherent system (MCS) if its structure function 9 satisfies:

(i) . ¢ is increasing.

(ii)'. For level j of component i, there exists a vector ('1.5)
such that @(ji,ﬁ) = j while @(21,5) # j for 2 # j, i=1,...,n and
J=0.1. .0 M.
(iii)'. $(1) = i for j=0,1,...,M.

Note that conditions (1)’ and (ii)' generalize conditions (i) and (ii)
in the binary case. Condition (iii)' is automatically satisfied in the binary
case, but is not implied in the present multistate case by (i)' and (ii)'.

Some examples of MCS's are:

Example 3.1. A series system: ¢(x) = min x

1<i<n

i

Example 3.2. A parallel system: ¢(x) = max x

1<i<n

g

Example 3.3. A k-out-of-n structure: ¢(x) = x(n-k+1)’ where
x(l) L e £ x(n) is an increasing rearrangement of XpseeesX o
Example 3.4. Let Pl""’Pr be nonempty subsets of C = {1,...,n} such that

r
UP, =C and PiPPj, i#j. Let ¢(x) = max min x,. Then $(x) is a MCS, and

d
o 1<j<r ist

Pl,...,Pr are called its min path sets.
Remark 3.1. The structures in Examples 3.1, 3.2, and 3.3 are natural

generalizations of familiar basic structures in the binary case. They

constitute special cases of the structure in Example 3.4, which in the

binary case defines the most general binary coherent structure ([1], Chap. 1).

The structure function of Example 3.4 is due to Barlow [2]. Since the structure

L \J ]
functions of Example 3.4 satisfy conditions (i) , (ii) , and (iii) of




Definition 3.1, they constitute a subclass of our MCS class. By examining
some special cases it is easy to see that the class in Example 3.4 is actually
a small subclass of our MCS. For instance, for a two component system,
Example 3.4 yields only two systems: the parallel system and the series
system. However for S = {0,1,2} there are more than 12 MCS's.

In the remainder of this section we investigate the structural properties
of the MCS. We extend results obtained in the binary case ([1], Chap. 1) to
the more general multistate case.

The following lemma gives a decomposition identity useful in carrying
out inductive proofs. It holds for any multistate structure, not just for
the MCS.

Lemma 3.1. The following identity holds for any n~-component structure

function ¢.

M

(3.1) $(x) = I

ot $(34,%) I[xi_j] for 1s],....n,

where

1 1f x =3
1
Tix =31 =
) | 0 1f xi#j.
The proof is obvious and therefore omitted.
The following theorem gives simple bounds on MCS performance.
Theorem 3.1. Let ¢ be the structure function of an MCS of n components.
Then

(3.2) min x; < ¢(x) < max x,.

1<i<n 1<i<n

Proof. Let m = max Xy Then ¢(x) < ¢(m) by the monotonicity of %.

1<i<n

A}
By condition (iii) of Definition 3.1, ¢(m) = m. The upper bound follows.




The proof establishing the lower bound is similar. ||

Theorem 3.1 states that a parallel system yields the best performance
of an MCS, and a series system yields the worst performance. Using this
theorem, we will show similar probabilistic bounds in Section 4.

As in the binary case, we may define a dual structure for each multistate
structure.

Definition 3.2. Let ¢ be the structure function of a multistate system.

The dual structure function ¢D is given by:
(3.3) 2(x) = M - BQx ... Mx ).

It is easy to verify that the dual of an MCS is an MCS.

Example 3.5. The dual of a series (parallel) system is a parallel (series)
system. More generally, the dual of a k-out-of-n system is an (n-k+l)-out~-
of-n system.

Design engineers have used the well-known principle that redundancy at
the component level is preferable to redundancy at the system level (all
other things being equal). We present this principle in mathematical form
along with a proof for MCS's.

Theorem 3.2. Let ¢ be the structure function of an MCS. Then

1). o(xVy) > ¢(x) Vo(y).
(11). o(xly) < o(x) A o(y).
Equality holds in (i) for all x and y if and only if the structure is
parallel. Equality holds in (ii) for all x and y if and only if the structure
is series.
Proof. (i). Xy v 2 Z_xi, i=1l,...,n. Thus ¢(xVy) > &(x) since ¢ is

increasing. Similarly, ¢(xVy) > ¢(y). It follows that $(xVy) > max[d(x),

d ()] = o (x) V o(y).




(ii). A similar argument proves (ii).

If the structure is parallel (series), then equality in (i) ((ii)) is
readily established.

Next assume #(xVy) = &(x) V &(y) for all x and y. For each i,j, there
exists (-1.5) such that 0(11.5) = j and 9(11.5) < j when 2 < j, i=1,...,n and
j=0,1,...,M (by (11)' of Def. 3.1). Since (ji-i) = (ji.O) v (01,5), we
have j = ¢(3,,x) = ¢(j;,0) V 2(0;,x). It follows that #(3;,9) = j for
i=l,...,n and j=0,1,...,M. Now ¢(x) = Q(xl,o,...,O) v o(O,xz.O....,O)

V oes V¥ ¢(0,0,...,xn) - xIszv...Vxn = max X - Therefore ¢ is a parallel
structure. i

Finally, to prove necessity for equality in (ii), assume ¢(xl\y)
= &(x) A #(y) for all x and y. Let @D be the dual MCS of ¢. It is easy to
show that QD(EVX) = ¢D(5) v ¢D(x) for all x and y. Hence by (i), ¢D is a
parallel structure. Therefore ¢ is a series structure. ||

In binary coherent structure theory, the concepts of minimal path vectors
and minimal cut vectors play a crucial role. The analogue in MCS theory is
the concept of critical connection vectors. Using this concept we can
represent the state of a MCS in terms of its critical connection vectors.

Definition 3.3. A vector x is said to be a connection vector to level

j if 6(x) = 3, j=0,1,...,M.

Definition 3.4. A vector x is said to be an upper critical connection

vector to level j if ¢#(x) = j and y < x implies ¢(y) < j, j=1,...,M.

Similarly, we can define a lower connection vector to level j, j=0,1,...,

M-1.

The existence of such critical connection vectors is guaranteed by the

conditions of Definition 3.1.




=10 =

Let x be an upper critical connection vector to level j. Define C (x)

3

= {i: x;2j}. Obviously C (x) is a non-empty subset of C = {1,...,n}. For

b
h B3 IR R Cj = {Cj(i)‘ X is an upper critical connection vector to

level j}. Then the following lemma shows that Cj enjoys a property similar
to that enjoyed by the minimal path sets and the minimal cut sets in the
binary case.
Lemma 3.2. For j=1,...,M,
i). UCj = 1.2 s nl.
(ii). If A and B are two different members of Cj‘ then ADB.
The proof follows readily from Def. 2.1 and hence is omitted.
3 e

For j=1,...,M, let j,...,v the upper critical connection vectors
4 &=

to level j, where J = (yJ ,...,yj ). The following theorem, stated without
Zr Ir nr

proof, enables us to determine the state of an MCS using its upper critical
connection vectors.

Theorem 3.3. Let ¢ be the structure function of an MCS. Let zi....,zi

be its upper critical connection vectors to level j, j=1,...,M. Then (3.4)

9(x)>j if and omnly if 5.2.23 for some 2, lfﬂjpj.

Theorem 3.3 is used in Section 4 to establish bounds on the system

performance function.

4. Stochastic Performance of Multistate Coherent Systems.

In Section 3 we discussed deterministic aspects of MCS's. In this
section, we determine the relationship between the stochastic performance
of the system and the stochastic performances of its components. We also
obtain bounds on system performance which are particularly useful when exact

system performance is difficult to evaluate.
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Let xi denote the random state of componenet i, with

P(X 'j] e ’
(4.1) 1 1]

P(X,<i] = P (3)

j=0,1,...,M and i=1,...,n. Pi represents the performance distribution of

component i. Clearly

3
P(j)'ZP ’
i oo Frn

M
PM = L
3 k=0

Pi = 1

for Isl, ... 0.

let X = (xl,...,xn) be the random vector representing the states of
components 1,...,n, where the xl,...,xn are assumed to be statistically
mutually independent. Then ¢(X) is the random variable representing the
system state of the MCS having structure function ¢, with
P["(}_{_).j] - Pjs j-0’1v°'-suv
(4.2)

P[6(X)<j] = P(§), j=0,1,...,M.

P represents the performance distribution of the system. Let h=Ed (X);

we may express h as follows:

h = hg(Pl""’Pn)’
since h is a function of the Pl,...,Pn. We may also express h alternatively:
h = hR(RI,EZ’- .o 92‘\) ’

where p; = (pio’pil""’pim) for i=1,...,n. In either case we call h the

performance function of the system.

The following identity expresses a system performance function of n
components in terms of system performance functions of n-1 components.

Lemma 4.1. The following identity holds for h:




e ———— _:m——-————.______________‘
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M

(4.3) h(21)22s°"120) » jEO Pij h(ji;aly---sen)’ i=1l,...,n,

where h(ji;?.l'.".Z""’En) = E¢(j1,§) = E¢(X1.-.-.Xi_1. 3 Xi_l.---.xn)-

Proof. By Lemma 3.1 and the mutual independence of the components, we

have:

M

E6(X) = I EI_ .1 °* E6(3,,X).
oo 1%%3) 1

Relation (4.3) follows immediately. |

o

The following theorem shows that h is strictly increasing in each pij
for j > 0.

Theorem 4.1. Let h(p. ""Rn) be the performance function of an MCS.
Let 0<pij<l for i=1,...,n and j=0,1,...,M. Then h(Rl""’En) is strictly

increasing in pij’ i=] ...,n and J=1,... .M.

M
Proof. From (4.3) and the fact that I Py =1, i=1,...,n, we have
j=0
M
h(Rl,...,Efl) - Z Pij E[¢(ji’£) = ¢(oi’_x_)]'
3=0
Thus
: oh
= = E[¢(f.,X) - ¢(0,,X)], i=1,...,n and j=1,...,M.
; Bpij 31 He i

Since ¢ is increasing, E[¢(ji,§) - ¢(Oi,§)]_3 0. 1In additionm, ¢(ji,§°)
- ¢(0i,§°) > 0 for some (-i,gf) since the structure is an MCS. Since
O<p1j<1 for all i and j, we have E[¢(ji,§) - ¢(Oi,§)] > 0. Thus the desired
result follows. ||

Next we obtain properties of h as a function of the Pl""’Pn' First

we show that h(P ’Pn) is monotone increasing with respect to stochastic

100
ordering. A similar result is proved by Barlow [2] for his subclass of
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MCS's (see Ex. 3.4). Our proof of the more general result is simpler.
Theorem 4.2. Let Pi’Pj'. be two possible performance distributions for
component i, i=1,...,n. Assume Pi(j) > P;(j) for j=0,1,...,M and i=1,...,n.
Let P (P') be the corresponding system performance distribution. Then
(1) B(F) 2 P'(j) for 1=0,1,...,M,

(1) B@peeiasP ) S BIP L enB )

' L
Proof. Let Xl,. e ,xn(x e ate ,Xn) be mutually independent random variables

1] L
having distribution functions Pl, e ’Pn (Pl s ’Pn) respectively. Then for

i

1 IR o Pi(j) > P;(j) for j=0,1,...,M implies that xi s<t X;. Since ¢ is
increasing, ¢(X) s<t ¢(§'). The desired results in (i) and (ii) follow
immediately. “

Similarly, we relate properties of P, the system performance distribution,
to properties of h, the system performance function, or to properties of

the pij' As examples we state the following two straightforward results.

Lemma 4.2. Let h be the performance function and P be the performance

distribution of an MCS. Then
M-1 _ x
h= I P(j), where P(j) =1 - P(j).
30
Proof. Since ¢(X) is a nonnegative integer valued random variable,
-]
then E¢(X) = I P[¢(X) > j], yielding the desired result. ||
j=0

A decomposition identity is given in:
Theorem 4.3. Let ¢ be the structure function of a MCS. Then
M

(4.4) P[e(X)>2]1 = L p

13 PLOGLD2R0, 2=1,... M.
3=0

Proof. By the law of total probability, we have:

M
PIO(O2R] = I PlO(X)2R[X;=3] PIX =3].
j=0



< 1A =

Since the components are mutually independent, (4.4) follows immediately. H
Next we obtain bounds on both the system performance function and the
system performance distribution. Using Theorem 3.1, we establish:
Theorem 4.4. Let P be the performance distribution and h be the
performance function of an MCS. Let Pi be the ith component performance
distribution for i=1,...,n. Then for j=0,1,...,M-1:

n n

). ™ P.(§) LP@ <1-7 P .3),
i=1 i=1
Mo b M n
(di)s I m Pi(j-l) <£h< Z[1-m Pi(j-l)].
j=1 i=1 j=1  i=1
Proof. (i). By Theorem 3.1 we have min X; < $(X) < max X,. Since
1<i<n 1<i<n
Xl,...,Xn are mutually independent, (i) follows immediately.
M
(i1). We use the fact that h = I P[¢(X)>j] and the bounds on P[&(X)>j]. |
i=1

Next we illustrate how we can use the upper cticial connection vectors
to establish bounds on the system performance distribution P and consequently

on system performance function h. Let j,..., J be the upper critical
4O an

connections to level j, j=0,1,...,M. Let Ai denote the eveng that __z_xi,

3
3
g Al

r=1,...,nj. By Theorem 3.3, it follows that P[$(X)>j] = P[
r=1

Let Sk = IP[A,, Ai SEve Aik]. By the inclusion-exclusion principle,
2
11, <1y<. .. <4y <n
n
k-1
POD2I] = I (-1)° §,.
k=1
Thus
n
h|
PO(X)>5] < 5, = I P[A],
r=1

Vv
wn
|
w

Pl6(®)21] > 8, - S,,

B
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and so on, constituting upper and lower bounds on P[$(X)>j] = P(j-1) for

M
j=1,...,n. Since h = I P[$(X)>]]; we antomatically have upper and lower
i=1
j s () j ] o
bougds on h also. Note that P(A)) = P[X > y ] = P[X;>y] ,X,2y5 ..., X 2y] ]
= j =
121 P[xizyir] for lj;fpj and j=1,...,M.

5. Dynamic Models for Multistate Coherent Systems.

In the last two sections, we have studied deterministic and probabilistic
properties of MCS's at a fixed point in time. Now we consider dynamic models,
i.e., models in which the state of the system and of its components vary over
time. At time 0O, the system and each of its components are in state M
(perfect functioning). As time passes, the performance of each component
(and consequently of the system itself) deteriorates to successively lower
levels, until ultimately failure occurs (level 0 is attained).

In the binary case, the length of time during which a component or
system functions is called the lifelength of the component or system; these
lifelengths are nonnegative random variables. The corresponding lifelength
distributions have been classified according to various notions, of aging.
See, e.g., [1]. Two of the important classes of life distributions are
the increasing failure rate average (IFRA) class and the new better than
used (NBU) class. Closure of these classes under various basic reliability
operations, such as convolution of distributions and formation of binary
coherent systems, are investigated in [1]. 1In this section we investigate
generalizations of these useful concepts in the multistate case.

Let {Xi(t), tgp} denote the stochastic process representing component
i state at time t as t varies over the non-negative real numbers for

i=1,...,n. The stochastic process {$(X(t)), t>0} represents the corresponding
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system state as t varies over the non-negative real numbers, where X(t)

= (Xl(t),...,xn(t)). We assume Xi(O) =M, i=1,...,n. We assume as before
that components are mutually statistically independent; thus the process
{Xi(t), t>0}, i=1,...,n, are also mutually independent.

Following Ross [12], we present:

Definition 5.1. The stochastic process {Xi(t), t>0} is said to be

IFRA process if Ti = inf{t: Xi(t)jj} is an IFRA random variable for
§=0,1,...,M1.

In a similar fashion we may define an IFRA process for the system:

v—

{o(X(t)), t>0}. Note that in the binary case, T: is simply the lifelength

of component i.

b The following theorem is due to Ross [12].

Theorem 5.1. The Generalized IFRA Closure Theorem.

Let {Xi(t), t>0}, i=1,...,n, be independent IFRA processes and ¢

i an increasing structure function. Then {¢$(X(t)), t>0} is an IFRA process.
We now give a definition for NBU stochastic processes different from

the one given by Ross [12]. We then derive a simple characterization for

our NBU stochastic processes. Using this characterization, we give a

simple proof of a generalized NBU closure theorem.

Definition 5.2. The stochastic process {Xi(t), tzp} is an NBU stochastic

process if Ti is an NBU random variable for j=0,1,...,M-1.

In a similar fashion we may define an NBU stochastic process {¢(§(t)),
t>0} for the system.

The following lemma gives a simple characterization for an NBU process
(as well as for an NBU random variable). We omit the simple proof.

Lemma 5.1. The stochastic process {X(t), t>0} is NBU if and only if
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for all s>0 and t>0:

4 ' '
X(s+t) < min(X (8),X (£)),

L] A
where X (s) and X (t) are two independent random variables having the same

distributions as X(s) and X(t) respectively.

We may now prove the main result of this section.

Theorem 5.2. Let ¢ be the structure function of an MCS having n
components. Let {Xi(t), t>0}, i=1,...,n be independent NBU stochastic
processes. Then {¢(§(t), tzp} is an NBU stochastic process.

Proof. For arbitrary fixed s>0 and t>0, let xi(s),...,x;(s),
X;(t),...,x;(t) be mutually independent random variables having the same
distributions as Xl(s),...,xn(s), X](t),...,xn(t) respectively. Since

{Xi(t), t>0} is an NBU process, we have by Lemma 5.1:
St 1 ]
Xi(s+t) < min(xi(s), Xi(t)), + i R, 8

Since ¢ is increasing, it follows that
st ' '
¢(X(s+t)) < ¢(min(X (s),X (t)).
By Theorem 3.2, ¢(min(§'(s),§'(c)) < min(¢(§'(s)), ¢(§'(t))). Thus
st ' '
d(X(s+t)) < min(d(X (s)), ¢(X (t))). Using Lemma 5.1 again, the desired

result follows. ||

Remark 5.1. The useful characterization of Lemma 5.1 makes our proof

of the generalized NBU closure theorem in the binary case simpler than the

proof given in [1].

- St s
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